Projectile Motion - Advanced Topics

Advanced Topics

  • Inclined plane motion:

    • Case 1: Rotated coordinates (simpler for incline problems):
      • Define $x'$ along incline, $y'$ perpendicular to incline.
      • Acceleration components:
        • $a_{x'} = -g \sin\phi$ (parallel to incline)
        • $a_{y'} = -g \cos\phi$ (perpendicular to incline)
      • Why rotate? Simplifies equations for projectiles launched/landing on slopes.
    • **Case 2: Standard coordinates **:
      • Incline equation: $y = x \tan\phi$
      • Solve $y(t) = x(t) \tan\phi$ for $t$, then compute range along incline.
    • Max range:
      • Uphill incline ($\phi > 0$): $\theta = 45^\circ - \frac{\phi}{2}\lt 45^\circ$
      • Downhill ($\phi < 0$): $\theta = 45^\circ + \frac{|\phi|}{2}\gt45^\circ$
      • Use optimal angle to calculate the range
  • Envelope curve of all trajectories:

    • For fixed launch speed $v_0$, all possible trajectories are bounded by:
      $$ y = \frac{v_0^2}{2g} - \frac{g x^2}{2 v_0^2} $$
    • Derivation steps:
      1. Start with trajectory equation: $y = x \tan\theta - \frac{g x^2 (1 + \tan^2\theta)}{2 v_0^2}$
      2. Rearrange as quadratic in $\tan\theta$:
        $$ \left( \frac{g x^2}{2 v_0^2} \right) \tan^2\theta - x \tan\theta + \left( y + \frac{g x^2}{2 v_0^2} \right) = 0 $$
      3. For real $\theta$, discriminant $\geq 0$:
        $$ \Delta =(-x)^2 - 4 \left( \frac{g x^2}{2 v_0^2} \right) \left( y + \frac{g x^2}{2 v_0^2} \right) \geq 0 $$
      4. Solve the above: $$ y \le \frac{v_0^2}{2g} - \frac{g x^2}{2 v_0^2} $$
      5. The boundary of reachable points is when discriminant $= 0$ , or :
        $$ y = \frac{v_0^2}{2g} - \frac{g x^2}{2 v_0^2} $$
    • Key insights:
      • Points inside the envelope: reachable with two launch angles.
      • Points on the envelope: reachable with exactly one launch angle (minimum speed required).
      • Points outside: unreachable for given $v_0$.
  • Minimal speed to reach a point $(x, y)$:

    • Minimal speed is found by solving discriminant $\Delta = 0$ .
    • Why this works:
      • Discriminant $\Delta$ decreases as $v_0$ decreases. So below critical speed, $\Delta<0$ and no $\theta$ will allow point $(x, y)$ reachable.
      • This speed gives exactly one trajectory (tangent to envelope) that passes through $(x, y)$.
    • It is not solved by $v_y = 0$
  • Critical point:

    • Envelope curve is not a trajectory—it’s the boundary of all possible paths for fixed $v_0$.
  • Parameterization by launch angle $\theta$ at fixed time $t$:

    • At time $t$, all possible positions for different $\theta$ form a circle:
      $$ x = (v_0 \cos\theta) t, \quad y = (v_0 \sin\theta) t - \frac{1}{2} g t^2 $$
      • Eliminate $\theta$: $x^2 + \left( y + \frac{1}{2} g t^2 \right)^2 = (v_0 t)^2$
    • Physical meaning:
      • Circle centered at $(0, -\frac{1}{2} g t^2)$ with radius $v_0 t$.
      • All projectiles launched at time $t=0$ with speed $v_0$ are on this circle at time $t$.

Related Topics