Projectile Motion on an Inclined Plane

← Back to Problems
Kinematics Beginner projectile

Source: High school physics (Chinese)

Problem

A small ball is projected from the base of a hill with a slope of $30^{\circ}$. The initial speed of the ball is $v_0 = 10$ m/s. Let $g = 9.8$ m/s$^2$.

  1. When the projection angle (the angle between the initial velocity and the horizontal) is $45^{\circ}$, what is the range of the ball on the hill?
  2. At what projection angle is the range of the ball on the hill maximized, and what is this maximum range?

[Q1] The range of the ball on the hill is:

$$R = \frac{2 v_0^2 \sin(\alpha - \beta) \cos\alpha}{g \cos^2\beta} \approx 4.98 \text{ m}$$

[Q2] The projection angle for maximum range is:

$$\alpha_{max} = 45^{\circ} + \frac{\beta}{2} = 60^{\circ}$$

The maximum range is:

$$R_{max} = \frac{v_0^2}{g(1+\sin\beta)} \approx 6.80 \text{ m}$$

We analyze the motion in a tilted coordinate system ($x', y'$) with the $x'$-axis along the inclined plane and the $y'$-axis perpendicular to it. The angle of inclination is $\beta = 30^{\circ}$. The projection angle relative to the horizontal is $\alpha$.

The components of gravitational acceleration in this system are:

$$g_{x'} = -g \sin\beta$$ $$g_{y'} = -g \cos\beta$$

The initial velocity components, where $\theta = \alpha - \beta$ is the projection angle relative to the incline, are:

$$v_{0x'} = v_0 \cos(\alpha - \beta)$$ $$v_{0y'} = v_0 \sin(\alpha - \beta)$$

The equations of motion for the ball's position are:

$$x'(t) = v_0 \cos(\alpha - \beta) t - \frac{1}{2} g \sin\beta t^2$$ $$y'(t) = v_0 \sin(\alpha - \beta) t - \frac{1}{2} g \cos\beta t^2$$

The time of flight $t_f$ is found by setting $y'(t_f) = 0$ for $t_f > 0$:

$$t_f = \frac{2 v_0 \sin(\alpha - \beta)}{g \cos\beta}$$

The range $R$ along the incline is $x'(t_f)$. Substituting $t_f$ into the $x'$ equation:

$$R = v_0 \cos(\alpha - \beta) \left( \frac{2 v_0 \sin(\alpha - \beta)}{g \cos\beta} \right) - \frac{1}{2} g \sin\beta \left( \frac{2 v_0 \sin(\alpha - \beta)}{g \cos\beta} \right)^2$$ $$R = \frac{2 v_0^2 \sin(\alpha - \beta)}{g \cos^2\beta} [ \cos(\alpha - \beta)\cos\beta - \sin(\alpha - \beta)\sin\beta ]$$

Using the cosine addition formula $\cos(A+B) = \cos A \cos B - \sin A \sin B$, we simplify the expression in the brackets:

$$R = \frac{2 v_0^2 \sin(\alpha - \beta) \cos\alpha}{g \cos^2\beta}$$

[Q1] Range for a projection angle of $45^{\circ}$ We substitute the given values: $\alpha = 45^{\circ}$, $\beta = 30^{\circ}$, $v_0 = 10$ m/s, and $g = 9.8$ m/s$^2$.

$$R = \frac{2 (10 \text{ m/s})^2 \sin(45^{\circ} - 30^{\circ}) \cos(45^{\circ})}{(9.8 \text{ m/s}^2) \cos^2(30^{\circ})}$$ $$R = \frac{200 \sin(15^{\circ}) \cos(45^{\circ})}{9.8 (\sqrt{3}/2)^2} = \frac{200 \sin(15^{\circ}) \cos(45^{\circ})}{9.8 \cdot (0.75)} \approx 4.98 \text{ m}$$

[Q2] Maximum range and corresponding angle To find the angle $\alpha$ that maximizes the range $R$, we need to maximize the term $\sin(\alpha - \beta)\cos\alpha$. Using the product-to-sum trigonometric identity $2\sin A \cos B = \sin(A+B) + \sin(A-B)$:

$$\sin(\alpha - \beta)\cos\alpha = \frac{1}{2}[\sin(2\alpha - \beta) + \sin(-\beta)] = \frac{1}{2}[\sin(2\alpha - \beta) - \sin\beta]$$

The range formula becomes:

$$R(\alpha) = \frac{v_0^2}{g \cos^2\beta}[\sin(2\alpha - \beta) - \sin\beta]$$

For a fixed $\beta$, $R$ is maximized when $\sin(2\alpha - \beta)$ is maximum, i.e., $\sin(2\alpha - \beta) = 1$. This occurs when:

$$2\alpha_{max} - \beta = 90^{\circ} \implies \alpha_{max} = \frac{90^{\circ} + \beta}{2}$$

For $\beta = 30^{\circ}$:

$$\alpha_{max} = \frac{90^{\circ} + 30^{\circ}}{2} = 60^{\circ}$$

The maximum range $R_{max}$ is found by substituting $\sin(2\alpha_{max} - \beta) = 1$ into the range expression:

$$R_{max} = \frac{v_0^2}{g \cos^2\beta}[1 - \sin\beta] = \frac{v_0^2(1 - \sin\beta)}{g(1-\sin^2\beta)} = \frac{v_0^2(1 - \sin\beta)}{g(1-\sin\beta)(1+\sin\beta)}$$ $$R_{max} = \frac{v_0^2}{g(1+\sin\beta)}$$

Substituting the values:

$$R_{max} = \frac{(10 \text{ m/s})^2}{(9.8 \text{ m/s}^2)(1 + \sin 30^{\circ})} = \frac{100}{9.8(1 + 0.5)} = \frac{100}{14.7} \approx 6.80 \text{ m}$$